15116

3 Hours / 100 Marks

Seat No.

Instructions:

- (1) All questions are compulsory.
- (2) Illustrate your answers with **neat** sketches **wherever** necessary.
- (3) Figures to the **right** indicate **full** marks.
- (4) Assume suitable data, if necessary.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

12

1. A) Attempt any three:

antral guatam

- i) Compare open loop and close loop control system.
- ii) Define the terms:
 - a) Poles

- b) Zeros
- c) Order of system
- d) Characteristic equation
- iii) State the advantages of PLC.
- iv) Draw block diagram of process control system. State functions of its block.

B) Attempt any one:

6

- i) Draw block diagram of PLC. Describe working of different parts of PLC.
- ii) Derive transfer function of block diagram shown in fig. using block diagram reduction rules.

Marks

2. Attempt any two:

16

- a) A system is given by differential equation $\frac{d^2y}{dx} + 4 \cdot \frac{dy}{dx} + 8 \cdot y = 8 \cdot x$. Where y is output and x is input. Determine time domain specification.
 - i) Rise time

ii) Peak time

iii) Settling time

- iv) Peak overshoot.
- b) For unity feedback system having open loop transfer function $G(S) = \frac{K(S+2)}{S(S^3 + 7S^2 + 12S)}$

Find:

- i) Type of system
- ii) All error coefficients
- iii) Steady state error for input $r(t) = R/2.t^2$.
- c) Draw the ladder diagram for two motor system with following condition:
 - i) Start switch starts motor 1
- ii) 10 second later motor 2 starts
- iii) Stop switch stops motor 1
- iv) 15 second later motor 2 stops

3. Attempt any four:

16

- a) Derive transfer function of RC Network.
- b) Describe the proportional control action w.r.t. eqn and response. State significance of proportional band.
- c) Draw block diagram of servo system. State function of its component.
- d) Define the terms:
 - i) Stable system

- ii) Unstable system
- iii) Critical stable system
- iv) Conditionally stable system
- e) Draw block diagram of DC input module of PLC. Describe its working.

4. A) Attempt any three:

12

- i) State Routh's stability criteria. State its advantages.
- ii) Draw block diagram of PLC power supply. State functions of its component.
- iii) Explain ON/OFF delay timer instruction with diagram.
- iv) Develop ladder diagram for logical operation.
 - a) OR

b) EX-OR

B) Attempt any one:

6

- i) Describe the wiring details of AC output module of PLC with diagram.
- ii) Explain PD control action w.r.t. equation and response. State their advantages and drawback.

Marks

5. Attempt any two:

16

a) Consider sixth order system with characteristic equation $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$. Determine stability of system using Routh's criterion.

[3]

- b) State output time response relationship of second order system for step input. Give meaning of different terms in it. Show the effect of damping on time response with waveforms.
- c) Describe the concept of sinking and sourcing in DC input module. Differentiate between fixed PLC and modular PLC.

6. Attempt any four:

16

- a) Describe PI control action. State their advantages.
- b) List different input and output devices used in PLC.
- c) Differentiate between linear time invariant and linear time varying system.
- d) Draw block diagram of AC output module of PLC. Describe its working.
- e) The transfer function of system is $\frac{C(S)}{R(S)} = \frac{K(S+6)}{S(S+2)(S+5)(S^2+7S+12)}$. Determine poles, zeros and pole-zero plot of system.